Find three numbers in ap whosr sum is 9and the product is 165
Answers
Answered by
3
Answer:
3 - ι√46, 3, 3 + ι√46
Step-by-step explanation:
Let the three terms be a, a + d and a + 2d.
⇒ Sum of terms = 9
⇒ a + a + d + a + 2d = 9
⇒ 3a + 3d = 9
⇒ 3(a + d) = 9
⇒ a + d = 3
Thus the second term is 3. In respect to this,
a = a + d - d = 3 - d
a + 2d = a + d + d = 3 + d
⇒ Product of terms = 165
⇒ a(a + d)(a + 2d) = 165
⇒ (3 - d) 3 (3 + d) = 165
⇒ 3(3 - d)(3 + d) = 165
⇒ 3(9 - d²) = 165
⇒ 9 - d² = 165 / 3
⇒ 9 - d² = 55
⇒ 9 - 55 = d²
⇒ -46 = d²
⇒ d = ±√-46
⇒ d = ±ι√46
Taking d = ι√46,
⇒ a = 3 - ι√46
⇒ a + 2d = 3 + ι√46
Taking d = -ι√46,
⇒ a = 3 + ι√46
⇒ a + 2d = 3 - ι√46
Thus the three numbers are 3 - ι√46, 3 and 3 + ι√46.
Similar questions