Math, asked by mathslordvictor9855, 1 year ago

Find three rational number between 1/8 & 1/3

Answers

Answered by BrainlyPrincess
9
What are rational numbers?

➾ Rational numbers are those numbers which are in the form \dfrac{m}{n} where m and n are integers and where n ≠ 0. For example, \dfrac{2}{1} i.e. 2, \dfrac{5}{7}, 3, 79, 0, etc



Now, coming to your question,

\dfrac{1}{8} and \dfrac{1}{3}

By cross multiplying,

\dfrac{1 × 3}{8 × 3} = \dfrac{3}{24}

\dfrac{1 × 8}{3 × 8} = \dfrac{8}{24}


Following are the rational numbers between \dfrac{3}{24} and \dfrac{8}{24} :-


1] \dfrac{4}{24}


2] \dfrac{5}{24}


3] \dfrac{6}{24}


4] \dfrac{7}{24}





Anonymous: Superb
BrainlyPrincess: thank you ✌☺
Anonymous: ☯⏪⏪⏪⏪
Answered by janvispatil11
1

Answer:


Step-by-step explanation:

Firstly multiply them with 4 one step to 3

Then find LCM of the denominator

After this see the denominator the LCM of the denominator is multiple of it

Then multiple the multiple both sides

Then you will find three rational number between them easily

As shown below

1/8x 4 & 1/3x4

4/32 &4/12

LCM is 96

So 4x3/32x3 4x8/12x8

We get 12/96 32/96

The rational number between them are 13/96, 14/96, 15/96, 15/96, and so on


Similar questions