find to domain of the function√x^2-3x+2
Answers
Answered by
3
Answer :
(-∞ , 1] U [2 , ∞)
Solution :
Let the given function be f(x) .
Thus ,
f(x) = √(x² - 3x + 2)
The given function f(x) will be a real valued function if ,
=> x² - 3x + 2 ≥ 0
=> x² - x - 2x + 2 ≥ 0
=> x(x - 1) - 2(x - 1) ≥ 0
=> (x - 1)(x - 2) ≥ 0
Here ,
Two cases arises :
1) x - 1 ≥ 0 and x - 2 ≥ 0
OR
2) x - 1 ≤ 0 and x - 2 ≤ 0
• Case1 : x - 1 ≥ 0 and x - 2 ≥ 0
=> x ≥ 1 and x ≥ 2
=> x ≥ 2
=> x € [2 , ∞)
OR
• Case2 : x - 1 ≤ 0 and x - 2 ≤ 0
=> x ≤ 1 and x ≤ 2
=> x ≤ 1
=> x € (-∞ , 1]
Thus ,
The domain of the given function will be given as ; x € (-∞ , 1] U [2 , ∞)
Similar questions