Math, asked by ayushgawande87, 7 months ago

Find total surface area of a cylindrical rod whose height is 6m and radius is 1m.​

Answers

Answered by kaushik05
20

Given:

• Height of the cylindrical rod = 6m

• Radius of the cylindrical rod = 1m .

To find :

• Total surface area of cylindrical rod =?

Solution :

• As we know that :

 \star  \boxed{ \red{\bold{ t \: s \: a \: of \: cylinder = 2 \: \pi \: r \: (r + h)}}} \\

put the given values :

 \implies \bold{ tsa \: of \: cylinder }= \: 2( \frac{22}{7} )(1)(1 + 6) \\  \\  \implies \bold{tsa \: of \: cylinder} =  \frac{44}{ \cancel{7}} ( \cancel{7}) \\  \\  \implies \bold{ tsa \: of \: cylinder} = 44 \:  {m}^{2}

Hence, The total surface area of cylindrical rod is 44m².

Answered by Anonymous
55

\large\underline\bold{ANSWER \red{\huge{\checkmark}}}

\large\underline\bold{GIVEN,}

\dashrightarrow Hieght\:of\:cylinder= 6m

\dashrightarrow Radius\:of\:cylinder=1m

\large\underline\bold{TO\:FIND,}

\dashrightarrow Total\:surface\:area\:of\:cylinder.

FORMULA IN USE,

\large{\boxed{\bf{ \star\:\:Total\:surface\:area\:of\:cylinder= 2\pi r(r+h) \:\: \star}}}

\large\underline\bold{SOLUTION,}

\dashrightarrow Total\:area\:of\:cylinder= 2\pi r (r+h)

\implies 2\times \dfrac{22}{7} \times 1 (1+6)

\implies 2\times \dfrac{22}{7}\times 7

\implies 2\times \dfrac{22}{\cancel{7}}\times \cancel{7}

\implies 2\times 22

\implies 44m^2

\large{\boxed{\bf{ \star\:\: T.S.A\:of\:cylinder= 44m^2\:\: \star}}}

\large\underline\bold{TOTAL\:SURFACE\:AREA\:OF\:CYLINDER= 44m^2}

_____________

Similar questions