Find Tsa of a cylunder radius 35cm and height is 2.5cm
vipinmamgai68:
ek correction hai height 2.5m hai
Answers
Answered by
4
Given Radius of the cylinder = 35cm
Given height of the cylinder = 2.5cm
To find - Total Surface area (T.S.A) of the cylinder.
Total Surface area of the cylinder = 2πr(r + h)
Where, The value of π is constant, It can either be 3.14 or 22/7, r stands for radius of the cylinder and h stands for the height of the cylinder.
![so \: tsa = 2 \times \frac{22}{7} \times 35(35 + 2.5) \\ \\ 2 \times \frac{22}{7} \times 35 \times 37.5 \\ \\ 2 \times 22 \times 5 \times 37.5 \\ \\ convert \: decimal \: into \: fraction \\ \\ 2 \times 22 \times 5 \times \frac{75}{2} \\ \\ 22 \times 5 \times 75 \\ \\ 8250 \: {cm}^{2} so \: tsa = 2 \times \frac{22}{7} \times 35(35 + 2.5) \\ \\ 2 \times \frac{22}{7} \times 35 \times 37.5 \\ \\ 2 \times 22 \times 5 \times 37.5 \\ \\ convert \: decimal \: into \: fraction \\ \\ 2 \times 22 \times 5 \times \frac{75}{2} \\ \\ 22 \times 5 \times 75 \\ \\ 8250 \: {cm}^{2}](https://tex.z-dn.net/?f=so+%5C%3A+tsa+%3D+2+%5Ctimes++%5Cfrac%7B22%7D%7B7%7D++%5Ctimes+35%2835+%2B+2.5%29+%5C%5C++%5C%5C++2+%5Ctimes+++%5Cfrac%7B22%7D%7B7%7D++%5Ctimes+35+%5Ctimes+37.5+%5C%5C++%5C%5C+2+%5Ctimes+22+%5Ctimes+5+%5Ctimes+37.5+%5C%5C++%5C%5C+convert+%5C%3A+decimal+%5C%3A+into+%5C%3A+fraction+%5C%5C++%5C%5C+2+%5Ctimes+22+%5Ctimes+5+%5Ctimes++%5Cfrac%7B75%7D%7B2%7D++%5C%5C++%5C%5C+22+%5Ctimes+5+%5Ctimes+75+%5C%5C++%5C%5C+8250+%5C%3A++%7Bcm%7D%5E%7B2%7D+)
Given height of the cylinder = 2.5cm
To find - Total Surface area (T.S.A) of the cylinder.
Total Surface area of the cylinder = 2πr(r + h)
Where, The value of π is constant, It can either be 3.14 or 22/7, r stands for radius of the cylinder and h stands for the height of the cylinder.
Answered by
0
Answer:
Step-by-step explanation:
Attachments:
![](https://hi-static.z-dn.net/files/d20/5032de7a36cf20191aa832c02e19eea7.jpg)
Similar questions
Math,
1 year ago
Biology,
1 year ago
Chemistry,
1 year ago
Chinese,
1 year ago
Computer Science,
1 year ago