Find two consecutive odd numbers such that two- fifths of the smaller exceeds two- ninths of the
larger by 4.
Answers
Answered by
11
Step-by-step explanation:
Let x be the smaller odd integer and (x + 2) be the greater odd integer respectively.
2/5th of the smaller odd integer exceeds 2/9th of the greater odd integer by 4.
So, according to the question.
2x/5 = 2/9*(x + 2) + 4
⇒ 2x/5 = (2x + 4)/9 + 4
Taking L.C.M. of the denominators of the right side, we get.
2x/5 = (2x + 4 + 36)/9
Now, cross multiplying, we get.
⇒ (2x*9) = 5*(2x + 40)
⇒ 18x = 10x + 200
⇒ 18x - 10x = 200
⇒ 8x = 200
⇒ x = 200/8
⇒ x = 25
Putting the value of x, we get
x + 2
25 + 2 = 27
So, the smaller integer is 25 and the greater odd integer is 27
guys plz Follow . me.
l hope it is helpful for you...
Similar questions
Social Sciences,
4 months ago
Computer Science,
4 months ago
Math,
8 months ago
Math,
8 months ago
English,
1 year ago
Biology,
1 year ago