find two consecutive positive natural numbers sum of whose squares is
Answers
.............................................................................................
STEP 1: Define x:
Let one number be x
The other number is x + 1
..............................................................................................
STEP 2: Form the equation:
The sum is their square 365
x² + (x + 1)² = 365
..............................................................................................
STEP 3: Solve x:
x² + (x + 1)² = 365
x² + x² + 2x + 1 = 365
2x² + 2x - 364 = 0
x² + x - 182 = 0
(x - 13) (x + 14) = 0
x = 13 or x = -14 (rejected, because it is negative)
..............................................................................................
STEP 4: Find the numbers:
one number = x = 13
the other number = x + 1 = 13 + 1 = 14
..............................................................................................
Answer: The numbers are 13 and 14
.............................................................................................