Find two consecutive positive odd integers whose productis 483
Answers
Answered by
4
★★
հίί ʍαtε_______✯◡✯
.
.
.
.
_________________________ ✶
һєяє' ʏȏȗя ѧṅśwєя ʟȏȏҡıṅɢ ғȏя________
.
✯ x(x+2)=483
☛x2+2x-483=0
☛x2+(23-21)x-483=0
☛x2+23x-21x-483=0
☛x(x+23)-21(x+23)=0
☛(x-21)(x+23)=0
☛x=21; x=-23; Rejecting the negative value,
☛x=21
☛First number= 21
☛Second Number= 23
_______________________★
★BRAINLY★
հίί ʍαtε_______✯◡✯
.
.
.
.
_________________________ ✶
һєяє' ʏȏȗя ѧṅśwєя ʟȏȏҡıṅɢ ғȏя________
.
✯ x(x+2)=483
☛x2+2x-483=0
☛x2+(23-21)x-483=0
☛x2+23x-21x-483=0
☛x(x+23)-21(x+23)=0
☛(x-21)(x+23)=0
☛x=21; x=-23; Rejecting the negative value,
☛x=21
☛First number= 21
☛Second Number= 23
_______________________★
★BRAINLY★
Answered by
0
let the two consecutive positive odd integers be x and x+2.
Then,
x(x+2)=483
x^2+2x=483
x^2+2x-483=0
x^2+23x-21x-483=0
x(x+23)-21(x+23)=0
Therefore, x=21 and 23
Then,
x(x+2)=483
x^2+2x=483
x^2+2x-483=0
x^2+23x-21x-483=0
x(x+23)-21(x+23)=0
Therefore, x=21 and 23
Similar questions