Find two whole numbers whose sum is 27 and product is 182.
Answers
Answer:
Let the first number be x and the second number is 27 - x. It is given that the product of these numbers is 182. Therefore, the numbers are 13 and 14.
Step-by-step explanation:
Hope it helps you.
Mark as BRAINLIAST
Given : two whole numbers whose sum is 27 and product is 182.
To Find : numbers
Solution:
Let say two numbers are
x & y
x + y = 27
=> y = 27 - x
xy = 182
=> x (27 - x) = 182
=> 27x - x² = 182
=> x² - 27x + 182 = 0
using middle term split
=> x² - 13x - 14x + 182 = 0
=> x(x - 13) - 14(x - 13) = 0
=> (x - 13)(x-14) = 0
=> x = 13 , x = 14
y = 27 - x
=> if x = 13 then y = 27 - 13 = 14 ( 13 , 14 are two numbers )
or
=> if x = 14 then y = 27 - 14 = 13 ( 14 , 13 are two numbers )
Hence two numbers are 13 & 14
Learn More:
Will the product of two number be greater than 8281 if their sum is ...
https://brainly.in/question/11271479
in an examination it is laid down that a student passes if he secured ...
https://brainly.in/question/18542574