Math, asked by BelaWarrier9811, 1 year ago

Find unit vector perpendicular to the plane determined by the vectors a = 4i + 3j - k and b = 2i - 6j -3k.

Answers

Answered by TooFree
13

Answer:

 \bigg(\dfrac{-3}{7} , \dfrac{2}{7}, \dfrac{-6}{7} \bigg) \text { or } \bigg(\dfrac{3}{7} , \dfrac{-2}{7}, \dfrac{6}{7} \bigg)

Step-by-step explanation:

\text{Find } \overrightarrow a \times \overrightarrow b:

\overrightarrow a \times \overrightarrow b = \left|\begin{array}{ccc}i&j&k\\4&3&-1\\2&-6&-3\end{array}\right|

\overrightarrow a \times \overrightarrow b = (3 \times (-3) - (-1 )\times (-6))i - (4 \times (-3) - (-1) \times (2))j + (4 \times (-6) - (3 \times 2)k

\overrightarrow a \times \overrightarrow b = (-15)i - (-10)j + (-30)k

\overrightarrow a \times \overrightarrow b = -15k + 10j - 30k

\overrightarrow a \times \overrightarrow b = \bigg(-15, 10, - 30 \bigg)


\text{Find } |\overrightarrow a \times \overrightarrow b| :

| a \times \overrightarrow b| = \sqrt{(-15)^2 + (10)^2 + (-30)^2}

| a \times \overrightarrow b| = \sqrt{1225}

| a \times \overrightarrow b| = 35


\text{Find unit vector} :

\dfrac{\overrightarrow a \times \overrightarrow b}{|\overrightarrow a \times \overrightarrow b|} = \bigg(\dfrac{-15}{35} , \dfrac{10}{35}, \dfrac{-30}{35} \bigg) \text { or } \bigg(\dfrac{15}{35} , \dfrac{-10}{35}, \dfrac{30}{35}\bigg)

\dfrac{\overrightarrow a \times \overrightarrow b}{|\overrightarrow a \times \overrightarrow b|}= \bigg(\dfrac{-3}{7} , \dfrac{2}{7}, \dfrac{-6}{7} \bigg) \text { or } \bigg(\dfrac{3}{7} , \dfrac{-2}{7}, \dfrac{6}{7} \bigg)

Similar questions