Math, asked by msslakshmi9644, 10 months ago

Find using first principle the derivative of x-1÷2x+7

Answers

Answered by navdeepkaur33
1

Answer:

9/(2x+7)^2

Step-by-step explanation:

use u/v formula

Answered by lublana
3

The derivative of f(x)

f'(x)=\frac{9}{(2x+7)^2}

Step-by-step explanation:

f(x)=\frac{x-1}{2x+7}

f(x+h)=\frac{x+h-1}{2(x+h)+7}

By first principle

f'(x)=lim_{h\rightarrow 0}\frac{f(x+h)-f(x)}{h}

f'(x)=lim_{h\rightarrow 0}\frac{\frac{x+h-1}{2x+2h+7}-\frac{x-1}{2x+7}}{h}

f'(x)=lim_{h\rightarrow 0}\frac{(x+h-1)(2x+7)-(x-1)(2x+2h+7)}{h(2x+2h+7)(2x+7)}

f'(x)=lim_{h\rightarrow 0}\frac{2x^2+7x+2xh+7h-2x-7-2x^2-2xh-7x+2x+2h+7}{h(2x+7)(2x+2h+7)}

f'(x)=lim_{h\rightarrow 0}\frac{9h}{h(2x+7)(2x+2h+7)}=\frac{9}{(2x+7)^2}

Hence, the derivative of f(x)

f'(x)=\frac{9}{(2x+7)^2}

#Learn more:

https://brainly.in/question/2693350

Similar questions