Math, asked by yuvikabansal1010, 4 months ago

Find value of a and b​

Attachments:

Answers

Answered by Anonymous
14

Given:-

  • \sf{\dfrac{5 + 2\sqrt{3}}{7 + 4\sqrt{3}} = a + b\sqrt{3}}

To Find:-

  • The value of a and b

Solution:-

Let us rationalize the denominator in LHS.

\sf{\dfrac{5 + 2\sqrt{3}}{7 + 4\sqrt{3}}}

Multiply the fraction by the conjugate of the denominator

= \sf{\dfrac{5 + 2\sqrt{3}}{7 + 4\sqrt{3}}\times \dfrac{7 - 4\sqrt{3}}{7 - 4\sqrt{3}}}

Applying the identity (a + b)(a - b) = a² - b² in the denominator

\sf{:\implies \dfrac{(5 + 2\sqrt{3})(7 - 4\sqrt{3})}{(7)^2 - (4\sqrt{3})^2}}

\sf{:\implies \dfrac{5(7 - 4\sqrt{3}) + 2\sqrt{3}(7 - 4\sqrt{3})}{49 - 48}}

\sf{:\implies \dfrac{35 - 20\sqrt{3} + 14\sqrt{3} - 24}{1}}

\sf{:\implies 11 - 6\sqrt{3}}

After Rationalizing the denominator we get:-

11 - 6√3 = a + b√3

On Comparing, we get:-

\sf{a = 11}

\sf{b\sqrt{3} = -6\sqrt{3}}

\sf{:\implies b = \dfrac{-6\sqrt{3}}{\sqrt{3}}}

\sf{:\implies b = \dfrac{-6\not{\sqrt{3}}}{\not{\sqrt{3}}}}

\sf{:\implies b = -6}

\sf{\therefore The\:value\:of\:a\:is\:11}

And,

\sf{The\:value\:of\:b\:is\: -6}

______________________________________

Similar questions