Math, asked by rishirukhiyana, 3 months ago

find value of a and b if 3+4root2/3-4root2=a+b root 2​

Answers

Answered by mathdude500
2

\begin{gathered}\begin{gathered}\bf \: Given - \begin{cases} &\sf{\dfrac{3 + 4 \sqrt{2} }{3 - 4 \sqrt{2} }  = a + b \sqrt{2} } \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf \: To\:find - \begin{cases} &\sf{the \: value \: of \: a \: and \: b}  \end{cases}\end{gathered}\end{gathered}

Concept Used :-

Rationalization of the denominator

  • So, in order to rationalize the denominator, we need to get rid of all radicals that are in the denominator.

  • We just multiply and divide by the conjugate (with opposite sign in between two terms) of the term given in the denominator.

Now,

Let's solve the problem!!

\large\underline{\bold{Solution :-  }}

\rm :\longmapsto\:\dfrac{3 + 4 \sqrt{2} }{3 - 4 \sqrt{2} }  = a + b \sqrt{2}

On rationalizing the denominator, we get

\rm :\implies\:\dfrac{3 + 4 \sqrt{2} }{3 - 4 \sqrt{2} }  \times \dfrac{3 + 4 \sqrt{2} }{3 + 4 \sqrt{2} }  = a + b \sqrt{2}

\rm :\implies\:\dfrac{(3 + 4 \sqrt{2})^{2}  }{ {3}^{2}  - (4 \sqrt{2})^{2} }  = a + b \sqrt{2}

We know,

 \boxed{ \bf \:  {(x + y)}^{2}  =  {x}^{2}  + 2xy +  {y}^{2} }

 \boxed{ \bf \:  {x}^{2} -  {y}^{2}   = (x + y)(x - y)}

So,

\rm :\longmapsto\:\dfrac{9 + 32 + 24 \sqrt{2} }{9 - 32}  = a + b \sqrt{2}

\rm :\longmapsto\:\dfrac{41 + 24 \sqrt{2} }{ - 23}  = a + b \sqrt{2}

\rm :\longmapsto\: - \dfrac{41}{23}  - \dfrac{24}{23}  \sqrt{2}  = a + b \sqrt{2}

So, on comparing, we get

 \rm :\implies\:\boxed{ \bf \: a \:  = \:   - \:  \dfrac{41}{23}  \:   \:  \: \: and  \:  \:  \: \: b \:  =  \:  -  \: \dfrac{24}{23} }

Similar questions