Math, asked by yashpurwar, 1 year ago

find value of a and b so that x⁴+x³+8x²+ ax-b is divisible by x²+1 . solve using long divison method.

Attachments:

Answers

Answered by GuRU2ARyA
44
hope this will help you
Attachments:
Answered by ashishks1912
28

GIVEN :

The expression is   is divisible by

TO FIND :

The values of a and b by solving the given polynomials by Long Division method

SOLUTION :

Now divide the given polynomial

x^4+x^3+8x^2+ax-b is divisible by x^2+1

x^2+1 can be written as x^2+0x+1

                                  x^2+x+7

                          ______________________

       x^2+0x+1 ) x^4+x^3+8x^2+ax-b

                            x^4+0x^3+x^2

                    ___(-)___(-)__(-)_____________

                                x^3+7x^2+ax

                                x^3+0x^2+x

                             __(-)__(-)__(-)_____

                                         7x^2+(a-1)x-b

                                         7x^2+0x+7

                                      _(-)___(-)__(-)___

                                                  (a-1)x-b-7

                                                _________

The quotient is  and remainder is  (a-1)x-b-7

Since the the polynomial is completely divided by  so that the remainder is zero

∴ (a-1)x-b-7=0  

(a-1)x-b-7=0  can be written as

(a-1)x+(-b-7)=0x+0

Now equating the coefficients of x and constant we get

a-1=0 and -b-7=0

∴ a=1 and b=-7

∴ The values of a and b is 1 and -7 respectively.

Similar questions