Math, asked by ankita1377, 1 year ago

find value of n in above question​

Attachments:

Answers

Answered by MaheswariS
0

Answer:

The value of n is 55

Step-by-step explanation:

\text{In the expansion of }(2+\frac{x}{3})^n,\text{ if the coefficients of }x^7\text{ and }x^8\text{ are equal}

\textbf{Concept used:}

\text{The general term in the expansion of }(a+b)^n\text{ is}

\boxed{\bf\:T_{r+1}=^nC_r\:a^{n-r}\:b^r}

\text{in the expansion of }(2+\frac{x}{3})^n\:\text{ the general term is}

\:T_{r+1}=^nC_r\:a^{n-r}\:b^r

\:T_{r+1}=^nC_r\:2^{n-r}\:(\frac{x}{3})^r

\:T_{r+1}=^nC_r\:\frac{2^n}{2^r}\:(\frac{x^r}{3^r})

\:T_{r+1}=^nC_r\:(\frac{2^n}{6^r})\:x^r

\text{Put r=7}

\:T_{8}=^nC_7\:(\frac{2^n}{6^7})\:x^7

\text{Put r=8}

\:T_{9}=^nC_8\:(\frac{2^n}{6^8})\:x^8

\text{ since the coefficients of }x^7\text{ and }x^8\text{ are equal}

\implies\:^nC_7\:(\frac{2^n}{6^7})=^nC_8\:(\frac{2^n}{6^8})

\implies\:^nC_7\:(\frac{1}{6^7})=^nC_8\:(\frac{1}{6^8})

\implies\:^nC_7=^nC_8\:(\frac{1}{6})

\implies\:6(^nC_7)=^nC_8

\implies\:6=\dfrac{^nC_8}{^nC_7}

Using

\boxed{\bf\frac{^nC_r}{^nC_{r-1}}=\frac{n-r+1}{r}}

\implies\:6=\dfrac{n-8+1}{8}

\implies\:6=\dfrac{n-7}{8}

\implies\:48=n-7

\implies\:\boxed{n=55}

Similar questions