Find value of sin 18degree
Answers
Answer:
PROOF:-)
Let x = 18° .
then 5 x = 5 x 18°=90° .
⟹ 2x+3x =90°.
⟹2x=90-3x.
Taking Sin of both side
Sin2x=Sin(90-3x).
applying the formula of Sin 2x and sin (90-x) we get:
The above equation is equation in sin x
So,
As we have taken x = 18° which implies that x lies in first quadrant sin x must be positive.
So,
Answer:
Hy mere
here is your answer
Step-by-step explanation:
Let A = 18°
Therefore, 5A = 90°
⇒ 2A + 3A = 90˚
⇒ 2θ = 90˚ - 3A
Taking sine on both sides, we get
sin 2A = sin (90˚ - 3A) = cos 3A
⇒ 2 sin A cos A = 4 cos^3 A - 3 cos A
⇒ 2 sin A cos A - 4 cos^3A + 3 cos A = 0
⇒ cos A (2 sin A - 4 cos^2 A + 3) = 0
Dividing both sides by cos A = cos 18˚ ≠ 0, we get
⇒ 2 sin θ - 4 (1 - sin^2 A) + 3 = 0
⇒ 4 sin^2 A + 2 sin A - 1 = 0, which is a quadratic in sin A
Therefore, sin θ = −2±−4(4)(−1)√2(4)
⇒ sin θ = −2±4+16√8
⇒ sin θ = −2±25√8
⇒ sin θ = −1±5√4
Now sin 18° is positive, as 18° lies in first quadrant.
Therefore, sin 18° = sin A = −1±5√4