find value of [sin(-660)tan(1050)sec(-420)] /
[cos (225) cosec(315) cos (510)]
Answers
Answer:
2/√3
Step-by-step explanation:
Find value of [sin(-660)tan(1050)sec(-420)] /
[cos (225) cosec(315) cos (510)]
sin(-660°)
= -Sin(660°) sin (-θ) = - sin θ
= -Sin(720° - 60°)
= -Sin(2*360° - 60°)
= -(-Sin60) sin (n ∙ 360° - θ) = - sin θ
= Sin60° = √3/2
tan(1050°) = tan(1080° - 30°)
tan(3 * 360° - 30°) = -tan30° (tan (n ∙ 360° - θ) = - tan θ)
= -1/√3
sec(-420°) = Sec420° = Sec(360° + 60°) = Sec60° = 1/Cos60° = 2
Numerator = (√3/2)(-1/√3)(2) = -1
Denominator
cos (225°) = Cos (180° + 45°) = Cos45° = 1/√2
cosec(315) = Cosec(360° - 45°) = Cosec45° = 1/Sin45° = √2
Cos(510°) = Cos(360° + 150°) = Cos(150°) = Cos(180°-30°) = -Cos30° = -√3/2
Denominator = (1/√2)(√2)(-√3/2) = -√3/2
Numerator/Denominator = (-1)/(-√3/2) = 2/√3
Answer:
4/root 3 is the answer....