find value of x^3+y^3-12xy+64,when x+y=-4
Answers
Answered by
12
^3 +y^3 - 12xy + 64
= x^3 + y^3 + 64 - 3(4xy) => Notice that the polynomial is in the form of:
a^3 + b^3 + c^3 - 3abc = (a + b + c)(a^2 + b^2 + c^2 - ab - bc - ac)
therefore it factors as:
x^3 + y^3 + 64 - 12xy
= (x + y + 4)(x^2 + y^2 + 16 - xy - 4y - 4x) => substitute for x + y = -4
= (-4 + 4)(x^2 + y^2 + 16 - xy - 4y - 4x)
= 0 * (x^2 + y^2 + 16 - xy - 4y - 4x)
= 0
= x^3 + y^3 + 64 - 3(4xy) => Notice that the polynomial is in the form of:
a^3 + b^3 + c^3 - 3abc = (a + b + c)(a^2 + b^2 + c^2 - ab - bc - ac)
therefore it factors as:
x^3 + y^3 + 64 - 12xy
= (x + y + 4)(x^2 + y^2 + 16 - xy - 4y - 4x) => substitute for x + y = -4
= (-4 + 4)(x^2 + y^2 + 16 - xy - 4y - 4x)
= 0 * (x^2 + y^2 + 16 - xy - 4y - 4x)
= 0
Evraj:
thank you for your help
Similar questions