Math, asked by Anonymous, 8 months ago

Find value of x and y full explanation​

Attachments:

Answers

Answered by EthicalElite
81

Solution :

 \sf \dfrac{2}{2x+y} - \dfrac{1}{x-2y} + \dfrac{5}{9} = 0

 \sf and \: \dfrac{9}{2x+y} - \dfrac{6}{x-2y} + 4 = 0

⠀ ⠀⠀ ⠀ ⠀⠀ ⠀

 \sf Let \: \dfrac{1}{2x+y} = a \: and \: \dfrac{1}{x-2y} = b

⠀ ⠀ ⠀⠀ ⠀

 \sf \implies 2a - b + \dfrac{5}{9} = 0 \: \: \: -(1)

 \sf and \: 9a - 6b + 4 = 0 \: \: \: -(2)

⠀ ⠀ ⠀⠀ ⠀

 \sf From \: (1) : 2a - b + \dfrac{5}{9} = 0

 \sf 2a - b = - \dfrac{5}{9}

 \sf - b = - \dfrac{5}{9} - 2a

 \sf - b = - (\dfrac{5}{9} + 2a)

 \sf b = \dfrac{5}{9} + 2a

⠀ ⠀ ⠀⠀ ⠀

Put the above value of b in (2) :  \sf 9a - 6( \dfrac{5}{9} + 2a) + 4 = 0

 \sf 9a - \dfrac{30}{9} - 12a + 4 = 0

 \sf 9a - \dfrac{\cancel{30}^{10}}{\cancel{9}_{3}} - 12a + 4 = 0

 \sf - 3a - \dfrac{10}{3} + 4 = 0

 \sf \dfrac{-9a - 10 + 12}{3} = 0

 \sf -9a - 10 + 12 = 0 × 3

 \sf -9a + 2 = 0

 \sf -9a = -2

 \sf 9a = 2

 \boxed{\sf a = \dfrac{2}{9}}

⠀ ⠀ ⠀⠀ ⠀

Now, put value of a in (1) :  \sf 2(\dfrac{2}{9}) - b + \dfrac{5}{9} = 0

 \sf \dfrac{4}{9} - b + \dfrac{5}{9} = 0

 \sf \dfrac{4 - 9b + 5}{9} = 0

 \sf 4 - 9b + 5 = 0 × 9

 \sf 9 - 9b = 0

 \sf - 9b = - 9

 \sf 9b = 9

 \sf b = \dfrac{9}{9}

 \sf b = \cancel{\dfrac{9}{9}}

 \boxed{\sf b = 1}

⠀⠀

 \sf Now, \: we \: have \: value \: of \: a = \dfrac{2}{9}

 \sf and \: a = \dfrac{1}{2x+y}

 \sf \implies \dfrac{2}{9} = \dfrac{1}{2x+y}

 \sf \implies \dfrac{2(2x+y)}{9} = 1

 \sf \implies \dfrac{4x+2y}{9} = 1

 \sf \implies 4x + 2y = 1 \times 9

 \sf \implies 4x + 2y = 9 \: \: \: -(3)

 \sf Similarly, \: we \: have \: value \: of \: b = 1

 \sf and \: b = \dfrac{1}{x-2y}

 \sf \implies 1 = \dfrac{1}{x-2y}

 \sf \implies x-2y = 1 \: \: \: -(4)

 \sf From (4) : x-2y = 1

 \sf x = 1 + 2y

Now, put the above value of x in (3) :  \sf 4(1+2y) + 2y = 9

 \sf 4 + 8y + 2y = 9

 \sf 4 + 10y = 9

 \sf 10y = 9-4

 \sf 10y = 5

 \sf y = \dfrac{5}{10}

 \sf y = \dfrac{\cancel{5}^{1}}{\cancel{10}_{2}}

 \boxed{\sf y = \dfrac{1}{2}}

Put value of y in (4) :  \sf x-2(\dfrac{1}{2}) = 1

 \sf x - \cancel{2} \times \dfrac{1}{\cancel{2}} = 1

 \sf x - 1 = 1

 \sf x = 1 + 1

 \boxed{\sf x = 2}

 \sf \color{fuchsia} \therefore \: value \: of \: x = 2 \: and \: y = \dfrac{1}{2}

Similar questions