Math, asked by kharwarshubham69, 5 months ago

Find values of k for which the system of equation (3k-8)x+3y+3z=0,3x+(3k-8)y+3z=0,3x+3y+(3k-8)z=0 has a non -trival solution

Answers

Answered by bhawnabothra
6

Answer:

K=2/3 for non trivial solution

Attachments:
Answered by Manmohan04
0

Given,

\[\begin{array}{l}\left( {3k - 8} \right)x + 3y + 3z = 0\\3x + \left( {3k - 8} \right)y + 3z = 0\\3x + 3y + \left( {3k - 8} \right)z = 0\end{array}\]

has a non- trivial solution.

Solution,

\[\begin{array}{*{20}{c}}\vline& {\left( {3k - 8} \right)}&3&3\vline& \\\vline& 3&{\left( {3k - 8} \right)}&3\vline& \\\vline& 3&3&{\left( {3k - 8} \right)}\vline& \end{array} = 0\]

Add all rows and write it in first row.

\[ \Rightarrow \begin{array}{*{20}{c}}\vline& {\left( {3k - 2} \right)}&{\left( {3k - 2} \right)}&{\left( {3k - 2} \right)}\vline& \\\vline& 3&{\left( {3k - 8} \right)}&3\vline& \\\vline& 3&3&{\left( {3k - 8} \right)}\vline& \end{array} = 0\]

Taking \[{\left( {3k - 2} \right)}\] as a common from first row.

\[ \Rightarrow \left( {3k - 2} \right)\begin{array}{*{20}{c}}\vline& 1&1&1\vline& \\\vline& 3&{\left( {3k - 8} \right)}&3\vline& \\\vline& 3&3&{\left( {3k - 8} \right)}\vline& \end{array} = 0\]

\[\begin{array}{l} \Rightarrow 3k - 2 = 0\\ \Rightarrow 3k = 2\end{array}\]

\[ \Rightarrow k = \frac{2}{3}\]

Hence the value of k is \[\frac{2}{3}\] for non- trivial solution.

Similar questions