Math, asked by suchetadashputre93, 3 months ago

find vector equation of line x/1=y-1/2=z-2/3​

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

We know that

The cartesian equation of line is

\rm :\longmapsto\:\dfrac{x -  \alpha }{a_1}  = \dfrac{y -  \beta }{b_1}  = \dfrac{z -  \gamma }{c_1}  =  \lambda \:

Where,

 \sf \: ( \alpha,\beta,\gamma) \: is \: the \: point \: from \: where \: line \: passes \: having \:

 \sf \: direction \: ratios \: (a_1,b_1,c_1)

Its vector form is represented as

\rm :\longmapsto\: \vec{r} = \vec{a} + \lambda \: \vec{b}

where

\rm :\longmapsto\:\vec{a} =  \alpha  \hat{i} +  \beta \hat{j} +  \gamma \hat{k}

and

\rm :\longmapsto\:\vec{b} =  a_1 \hat{i} +  b_1 \hat{j} +  c_1\hat{k}

Let's solve the problem now!!

The given equation of line is

\rm :\longmapsto\:\dfrac{x}{1}  = \dfrac{y - 1}{2}  = \dfrac{z - 2}{3}

It implies that line passes through the point (0, 1, 2) and having direction ratios (1, 2, 3).

So,

\rm :\longmapsto\:\vec{a} = 0\hat{i} +  1\hat{j} +  2\hat{k}

\rm :\longmapsto\:\vec{a} = \hat{j} +  2\hat{k}

and

\rm :\longmapsto\:\vec{b} = \hat{i} +  2\hat{j} +  3\hat{k}

So,

Equation of line in vector form is

\rm :\longmapsto\: \vec{r} = \vec{a} + \lambda \: \vec{b}

On substituting the values of a and b,

 \red{\rm :\longmapsto\:\vec{r} =\hat{j} +  2\hat{k} \: +  \:  \lambda \: ( \hat{i} +  2\hat{j} +  3\hat{k})}

Additional Information :-

Let us consider two lines,

\rm :\longmapsto\: \vec{r} = \vec{a_1} + \lambda \: \vec{b_1}

and

\rm :\longmapsto\: \vec{r} = \vec{a_2} + \lambda \: \vec{b_2}

Then,

 \sf \: 2 \: lines \: are \parallel \: iff \:  \vec{b_1} \times \vec{ b_2} =  \vec{0}

 \sf \: 2 \: lines \: are \perp \: iff \:  \vec{b_1}.  \vec{b_2} = 0

Angle between two lines is

 \sf \: cos \theta \:  = \dfrac{\vec{b_1}. \: \vec{b_2}}{ |\vec{b_1}| \:  |\vec{b_2}|  }

Similar questions