Find whether the curves x^2 +y^2=8 and x^2-2y^2=4 orthogonal
Answers
Answered by
0
Two curves are said to be orthogonal if product of their slopes is -1.
The curve 1 is ,
x² +y²=8-----(A)
Differentiating once with respect to x,
2 x + 2 y y'=0
x + y y'=0
-----(1)
The curve 2 is ,
x² - 2 y²=4------(B)
Differentiating once with respect to x,
2 x - 4 y y'=0
x- 2 y y'=0
-------(2)
Equation A - Equation B
2 Equation A + Equation B,
Product of slopes of curve (1) and curve (2) is
y' Y'
Substituting the value of x, and y in above product of slopes,
As, product of slopes of two curves at point is not equal to -1, so the two curves are not orthogonal.
Similar questions