Math, asked by nishantdhiman2843, 6 months ago

find whether the equation 1/2x-3 +1/x-5=1 has real roots if real roots exist find them​

Answers

Answered by captainraushan
0

Step-by-step explanation:

By calculation we get

(X-5) + (2x-3) = (2x-3) (x-5)

3x-8 = 2x^2 - 10x - 3x +15

2x^2 - 16x +23 =0

Now check

b^2 - 4ac

256 - 184

27 > 0

So it has real roots

- b +sqrt b^2 - 4ac /2a

Or

- b - sqrt b^2 - 4ac /2a

16+ sqrt 27 / 8 और 16- sqrt 27 /8

Answered by ILLUSTRIOUS27
3

Equation

 \rm \frac{1}{2x - 3}  +  \frac{1}{x - 5}  = 1 \\  \rm \implies  \frac{x - 5 + 2x - 3}{(2x - 3)(x - 5)}  = 1 \\  \implies  \rm\frac{3x - 8}{2 {x}^{2}  - 10x - 3x + 15} = 1 \\  \rm \implies 3x - 8 = 2 {x}^{2} - 13x + 15 \\  \rm \implies2 {x}^{2} - 13x - 3x + 15 + 8  = 0\\   \implies  \boxed{ \rm2 {x}^{2}  - 16x + 23 = 0}

Now we have Quadratic equations. Now we find discriminant

Discriminant

 \rm d =  {b}^{2} - 4ac

Here,

  • a=2
  • b=-16
  • c=23

 \rm d =  {( - 16)}^{2}  - 4 \times 2 \times 23 \\  \implies \rm \: d = 256 - 184 \\  \implies \boxed{ \rm \:d = 72 }

   \because \rm \: d > 0 \\  \therefore \rm roots \: are \: real

Using Quadratic Formula

 \rm \: x =  \frac{ - b \pm \sqrt{d} }{2a}  \\  \rm \implies x =  \frac{16 \pm \sqrt{72} }{2 \times 2}  \\  \rm \implies \: x =  \frac{16 \pm6 \sqrt{2} }{4}  \\  \implies \rm \: x =  \frac{2(8 \pm 3 \sqrt{2} )}{4}  \\  \implies \boxed{ \rm \:x =  \frac{8 \pm3 \sqrt{2} }{2}  }

Similar questions