Math, asked by noorlahoria618, 9 months ago

find whether the quadratic equations 8x2 + 2x -3 =0 have real roots. if real roots exists, find them​

Answers

Answered by Anonymous
13

Solution:-

Equation:-

 \rm \: 8 {x}^{2}  + 2x - 3 = 0

Compare with

 \rm \: a {x}^{2}  + bx + c = 0

We get

 \rm \: a = 8 \:  \:  \:  \: b = 2 \:  \:  \: and \:  \:  \: c \:  =  - 3

Find Discriminant

 \rm \: D =  {b}^{2}  - 4ac

 \rm \: D = (2) {}^{2}  - 4 \times 8 \times  - 3

 \rm \: D = 4 + 96

 \rm \: D = 100

D > 0 so, Nature of root is Real , Distinct

So using quadratic formula

 \boxed{ \bf \: x =  \frac{ - b \pm \sqrt{D} }{2a} }

put the value on quadratic formula

 \rm \: x =  \frac{ - 2 \pm \:  \sqrt{100} }{2 \times 8}

 \rm \: x =  \frac{ - 2 \pm10}{16}

 \rm \: x =  \frac{ - 2 + 10}{16}  \:  \: and \:  \:  \frac{ - 2 - 10}{16}

 \rm \: x =  \frac{8}{16}  \:  \: and \:  \:  \frac{ - 12}{16}

Answer

 \rm \: x =  \frac{1}{2}  \:  \: and \:  \:  \frac{ - 3}{4}

Similar questions