Math, asked by SHAKIL2019, 1 year ago

find x^4 + 1/x^4 when x + 1/x = 3

Answers

Answered by sakshidubey2003
0

Step-by-step explanation:

[math]x+\frac{1}{x}=3[/math]

Taking square on both sides

([math]x+\frac{1}{x})^2=3^2[/math]

[math]x^2+\frac{1}{x^2}+2=9[/math]

[math]x^2+\frac{1}{x^2}=9-2[/math]

[math]x^2+\frac{1}{x^2}=7[/math]

Again taking square on both sides, we have

[math](x^2+\frac{1}{x^2})^2=7^2[/math]

[math](x^2)^2+(\frac{1}{x^2})^2+2=49[/math]

[math]x^4+\frac{1}{x^4}=49-2[/math]

[math]x^4+\frac{1}{x^4}=47[/math][math]x+\frac{1}{x}=3[/math]

Taking square on both sides

([math]x+\frac{1}{x})^2=3^2[/math]

[math]x^2+\frac{1}{x^2}+2=9[/math]

[math]x^2+\frac{1}{x^2}=9-2[/math]

[math]x^2+\frac{1}{x^2}=7[/math]

Again taking square on both sides, we have

[math](x^2+\frac{1}{x^2})^2=7^2[/math]

[math](x^2)^2+(\frac{1}{x^2})^2+2=49[/math]

[math]x^4+\frac{1}{x^4}=49-2[/math]

[math]x^4+\frac{1}{x^4}=47[/math]

Similar questions