Math, asked by jayatidsvaidya, 6 months ago

find x and y

explain properly

Attachments:

Answers

Answered by diya101108
2

Answer:

x = 30

y = 50

Step-by-step explanation:

x = 30 = corresponding angles

y = 50 = alternate angles

Answered by Anonymous
4

To find:-

The values of x and y.

Note:-

Firstly label the figure. (refer to the attachment provided)

Solution:-

In ∆ABD

\sf{\angle ADB = 50^\circ}

\sf{\angle BAD = 30^\circ}

According to angle sum property of a triangle,

Sum of all the angles of a triangle is always 180°

Therefore,

\sf{\angle ADB + \angle BAD + \angle ABD = 180^\circ}

= \sf{50^\circ + 30^\circ + \angle ABD = 180^\circ}

= \sf{80^\circ + \angle ABD = 180^\circ}

= \sf{\angle ABD = 180^\circ - 80^\circ}

= \sf{\angle ABD = 100^\circ}

Now,

\sf{\angle ABD + \angle CBD = 180^\circ\:\:\longrightarrow[Linear\:Pair]}

= \sf{100^\circ + x = 180^\circ}

= \sf{x = 180^\circ-100^\circ}

= \sf{ x = 80^\circ}

Now,

In ∆CBD

\sf{\angle CBD = 80^\circ}

\sf{\angle DCB = 45^\circ}

According to angle-sum property of a triangle,

\sf{\angle CBD + \angle DCB + \angle CDB = 180^\circ}

= \sf{80^\circ + 45^\circ + \angle CDB = 180^\circ}

= \sf{125^\circ + \angle CDB = 180^\circ}

= \sf{\angle CDB = 180^\circ - 125^\circ}

= \sf{\angle CDB = 55^\circ}

Now,

\sf{\angle EDC + \angle CDB + \angle ADB = 180^\circ \:\:\longrightarrow[Linear\:Pair]}

= \sf{y + 55^\circ + 50^\circ = 180^\circ}

= \sf{y + 105^\circ = 180^\circ}

= \sf{y = 180^\circ - 105^\circ}

= \sf{y = 75^\circ}

Therefore,

\sf{x = 80^\circ}

\sf{y = 75^\circ}

______________________________________

Attachments:
Similar questions