find x and y in the figure
Answers
Answer:
x = 80° and y = 75°
Step-by-step explanation:
- First Let's Solve For x
⇒ 30° + 50° = x (Exterior Angle Property)
⇒ x = 80°
- Now Solve for y
⇒ x + 45° + ∠CAD = 180° (Angle Sum Property)
⇒ 80° + 45° + ∠CAD = 180°
⇒ 125° + ∠CAD = 180°
⇒ 125° + ∠CAD - 125° = 180° - 125°
⇒ ∠CAD = 55°
50° + ∠CAD + y = 180° (Straight Line Angle Property)
⇒ 50° + 55° + y = 180°
⇒ 105° + y = 180°
⇒ 105° + y - 105° = 180° - 105°
⇒ y = 75°
★
★
☯∠ABC = 30°
☯∠BAC = 50°
☯∠ADC = 45°
★
☯∠ACD (x)
☯∠DAE (y)
★
1)Sum of all the 3 angles of a triangle is 180°
2)The sum of linear pair is 180°
★
☯∠ABC + ∠BAC + ∠ACB = 180° (By Formula 1)
or, 30° + 50° + ∠ACB = 180°
or, 80° + ∠ACB = 180°
or, ∠ACB = 180° - 80°
or, ∠ACB = 100°
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
☯∠ACB + ∠ACD = 180° (By Formula 2)
or, 100° + ∠ACD = 180°
or, ∠ACD = 180° - 100°
or, ∠ACD (x) = 80°
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
☯∠ADC + ∠ACD + ∠CAD = 180° (By Formula 1)
or, 45° + 80° + ∠CAD = 180°
or, 125° + ∠CAD = 180°
or, ∠CAD = 180° - 125°
or, CAD = 55°
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
☯∠BAC + ∠CAD + ∠DAE = 180° (By Formula 2)
or, 50° + 55° + ∠DAE = 180°
or, 105° + ∠DAE = 180°
or, ∠DAE = 180° - 105°
or, ∠DAE (y) = 75°
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
★
☯∠ACD (x) = 80°
☯∠DAE (y) = 75°