Math, asked by zainakhan22, 3 months ago

find x and y in the figure​

Attachments:

Answers

Answered by BrainlyKingdom
1

Answer:

x = 80° and y = 75°

Step-by-step explanation:

  • First Let's Solve For x

⇒ 30° + 50° = x   (Exterior Angle Property)

⇒ x = 80°

  • Now Solve for y

⇒ x + 45° + ∠CAD = 180°     (Angle Sum Property)

⇒ 80° + 45° + ∠CAD = 180°

⇒ 125° + ∠CAD = 180°

⇒ 125° + ∠CAD - 125° = 180° - 125°

⇒ ∠CAD = 55°

50° + ∠CAD + y = 180° (Straight Line Angle Property)

⇒ 50° + 55° + y = 180°

⇒ 105° + y = 180°

⇒ 105° + y - 105° = 180° - 105°

⇒ y = 75°

Answered by AritraKz22
2

 \large\mathfrak \pink{Solution:-}

 \underline \mathbb{GIVEN:-}

☯∠ABC = 30°

☯∠BAC = 50°

☯∠ADC = 45°

 \underline \mathbb{TO  \: FIND:-}

☯∠ACD (x)

☯∠DAE (y)

  \underline \mathbb{FORMULA:-}

1)Sum of all the 3 angles of a triangle is 180°

2)The sum of linear pair is 180°

 \underline \mathbb{BY  \: THE  \: PROBLEM:-}

☯∠ABC + ∠BAC + ∠ACB = 180° (By Formula 1)

or, 30° + 50° + ∠ACB = 180°

or, 80° + ∠ACB = 180°

or, ∠ACB = 180° - 80°

or, ∠ACB = 100°

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

☯∠ACB + ∠ACD = 180° (By Formula 2)

or, 100° + ∠ACD = 180°

or, ∠ACD = 180° - 100°

or, ∠ACD (x) = 80°

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

☯∠ADC + ∠ACD + ∠CAD = 180° (By Formula 1)

or, 45° + 80° + ∠CAD = 180°

or, 125° + ∠CAD = 180°

or, ∠CAD = 180° - 125°

or, CAD = 55°

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

☯∠BAC + ∠CAD + ∠DAE = 180° (By Formula 2)

or, 50° + 55° + ∠DAE = 180°

or, 105° + ∠DAE = 180°

or, ∠DAE = 180° - 105°

or, ∠DAE (y) = 75°

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

\underline \mathbb{ANSWER:-}

☯∠ACD (x) = 80°

☯∠DAE (y) = 75°

Similar questions