Math, asked by Cedric164, 1 year ago

find 'x' from the equation Sec(90+A)+x.SinATanA(90+A)=Cos(90+A)

Answers

Answered by Anonymous
38
sec(90+A)+x sin A tan(90+A)=cos(90+A)
-cosec A +x sinA(-cot A)=-sin A
x sin A (-cos A/sin A)=-sin A + cosec A
x(-cos A)=(1/sin A)-sin A
x (-cos A)=(1-sin square)/sin A
x=(sin square A-1)/sin A cos A
Answered by wifilethbridge
20

Answer:

x=\frac{sin^2A-1}{sin A cos A}

Step-by-step explanation:

To Find :  sec(90+A)+x sin A tan(90+A)=cos(90+A)

Solution :

sec(90+A)+x sin A tan(90+A)=cos(90+A)

Identity : sec(90+A) = -cosec A\\ tan(90+A) = -cot A\\cos(90+A) = -sin A

-cosec A +x sinA(-cot A)=-sin A

x sin A (\frac{-cos A}{sin A})=-sin A + cosec A

x(-cos A)=\frac{1}{sin A}-sin A

x (-cos A)=\frac{1-sin^2A}{sin A}

x=\frac{sin^2A-1}{sin A cos A}

Hence the value of x is x=\frac{sin^2A-1}{sin A cos A}

Similar questions