Math, asked by Sathvikreddy73, 3 months ago

find x if 9^x+2=26+3^2x+1​

Answers

Answered by mathdude500
1

Given :-

\rm :\longmapsto\: {9}^{x + 2} = 26 +  {3}^{2x + 1}

To Find :-

  • Value of x.

Solution :-

Given that,

\rm :\longmapsto\: {9}^{x + 2} = 26 +  {3}^{2x + 1}

\rm :\longmapsto\: {9}^{x}  \times  {9}^{2} = 26 +  {3}^{2x} \times  {3}^{1}

\rm :\longmapsto\: 81 \times {9}^{x} = 26 +  3 \times {9}^{x}

\rm :\longmapsto\: 81 \times {9}^{x}  -   3 \times {9}^{x}  = 26

\rm :\longmapsto\: {9}^{x}(81 - 3) = 26

\rm :\longmapsto\: {9}^{x} \times 78 = 26

\rm :\longmapsto\: {9}^{x} = \dfrac{26}{78}

\rm :\longmapsto\: {9}^{x} = \dfrac{1}{3}

\rm :\longmapsto\: {9}^{x}  =  {3}^{ - 1}

\rm :\longmapsto\: {3}^{2x}  =  {3}^{ - 1}

\rm :\longmapsto\:2x =  - 1

\bf\implies \:x =  -  \: \dfrac{1}{2}

Additional Information

Law of exponents :-

\begin{gathered}(1)\:{\underline{\boxed{\bf{\blue{a^m\times{a^n}\:=\:a^{m\:+\:n}\:}}}}} \\ \end{gathered}

\begin{gathered}(2)\:{\underline{\boxed{\bf{\purple{\dfrac{a^m}{a^n}\:=\:a^{m\:-\:n}\:}}}}} \\ \end{gathered}

\begin{gathered}(3)\:{\underline{\boxed{\bf{\orange{\dfrac{1}{x^n}\:=\:x^{-n}\:}}}}} \\ \end{gathered}

\begin{gathered}(4)\:{\underline{\boxed{\bf{\color{peru}{(a^m)^n\:=\:a^{m\times{n}}\:}}}}} \\ \end{gathered}

\begin{gathered}(5)\:{\underline{\boxed{\bf{\red{ {x}^{0} = 1}}}}} \\ \end{gathered}

\begin{gathered}(6)\:{\underline{\boxed{\bf{\green{ {a}^{m} =  {a}^{n} \implies \: m = n}}}}} \\ \end{gathered}

Similar questions