Math, asked by sanyukta72, 2 months ago


Find x if distance between points L(x, 7) and M(1, 15) is 10.

Answers

Answered by AtikRehan786
2

Answer:

this will be the ANSWER.

Attachments:
Answered by IamJaat
87

Question :-

  • Find x if distance between points L(x ,7) and M(1,15) is 10.

ㅤ‎‎‎‎ㅤㅤㅤㅤㅤ

Solution :-

  • Distance between LM = 10 (given)

ㅤ‎‎‎‎

Formula to be used :-

 \large {\boxed {\frak {\underline{\red { Distance \; Formula \; = \sqrt { ( x_2 - x_1 )^2 + ( y_2 - y_1 )^2 } }}}}}

ㅤ‎‎‎‎ㅤㅤㅤㅤㅤ

ㅤ‎‎‎‎ㅤ \small {\frak {\underline {\purple { Substituting \; the \; values \; in \; Formula :-}}}}

ㅤ‎‎‎‎ㅤ

 \implies {\sf { 10 = \sqrt { ( 1 - x )^2 + ( 15 - 7 ) ^2 }}}

ㅤ‎‎‎‎ㅤㅤㅤㅤㅤ

Using identity :- (a-b) ² = a² + b² - 2ab

ㅤ‎‎‎‎ㅤㅤㅤㅤㅤ

 \implies {\sf { 10 = \sqrt { 1 + x^2 -2x + (8)^2 }}}

ㅤ‎‎‎‎ㅤㅤㅤㅤㅤ

 \implies {\sf { 10^2 = x^2 - 2x + 65}}

ㅤ‎‎‎‎ㅤㅤㅤㅤㅤ

ㅤ‎‎‎‎ㅤ

 \implies \sf {100 = x^2 - 2x + 65}

ㅤ‎‎‎‎ㅤㅤㅤㅤㅤ

 \implies \sf {0 = x^2 - 2x + 65 - 100}

ㅤ‎‎‎‎ㅤㅤㅤㅤㅤ

 \implies \sf {0 = x^2 - 2x -35}

ㅤ‎‎‎‎ㅤㅤㅤㅤㅤ

Now, factorising :-

ㅤ‎‎‎‎ㅤㅤㅤㅤㅤ

 \implies \sf { x^2 - 7x +5x - 35= 0}

ㅤ‎‎‎‎ㅤㅤㅤㅤㅤ

 \implies \sf { x(x-7) + 5(x-7)}

ㅤ‎‎‎‎ㅤㅤㅤㅤㅤ

 \implies \sf { (x-7)(x+5)}

ㅤ‎‎‎‎ㅤㅤㅤㅤㅤ

\implies \sf { x = -5 , 7}

ㅤ‎‎‎‎ㅤㅤㅤㅤㅤ

Therefore, x = -5 or 7 .

Similar questions