Math, asked by bajajvirender, 1 year ago

find x if root (5^0 + 2/3)=(0.6)^2-3x

Answers

Answered by pulakmath007
41

SOLUTION

TO DETERMINE

The value of x when

 \displaystyle \sf{  \sqrt{ \bigg( {5}^{0}  +  \frac{2}{3} \bigg) }  =  {(0.6)}^{2 - 3x} \: }

EVALUATION

 \displaystyle \sf{  \sqrt{ \bigg( {5}^{0}  +  \frac{2}{3} \bigg) }  =  {(0.6)}^{2 - 3x} \: }

 \implies \displaystyle \sf{  \sqrt{ \bigg( 1 +  \frac{2}{3} \bigg) }  =  { \bigg( \frac{3}{5} \bigg)}^{2 - 3x} \: }

 \implies \displaystyle \sf{  \sqrt{ \bigg(  \frac{5}{3} \bigg) }  =  { \bigg( \frac{5}{3} \bigg)}^{3x - 2} \: }

 \implies \displaystyle \sf{  {{ \bigg(  \frac{5}{3} \bigg)}^{ \frac{1}{2} }  }  =  { \bigg( \frac{5}{3} \bigg)}^{3x - 2} \: }

 \implies \displaystyle \sf{   \frac{1}{2}   = 3x - 2}

 \implies \displaystyle \sf{  3x = 2 +  \frac{1}{2}  }

 \implies \displaystyle \sf{  3x = \frac{5}{2}  }

 \implies \displaystyle \sf{  x =  \frac{5}{6}  }

FINAL ANSWER

 \boxed{ \displaystyle \sf{   \:  \: x =  \frac{5}{6}   } \:  \: }

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

If 2^x+3 + 2^x – 4 =129,

then find the value of x.

https://brainly.in/question/23183505

Answered by Anonymous
121

\underline{\underline{\sf{\clubsuit\:\:Question}}}

  • Find "x" if  \sf{\sqrt{\left(5^0\:+\:\dfrac{2}{3}\right)}=\left(0.6\right)^{2-3x}}

\underline{\underline{\sf{\clubsuit\:\:Answer}}}

\bf{\bigstar \:\:\:x=\dfrac{5}{6}}

\underline{\underline{\sf{\clubsuit\:\:Calculations}}}

\sf{\sqrt{\left(5^0\:+\:\dfrac{2}{3}\right)}=\left(0.6\right)^{2-3x}}

Apply exponent rule : \sf{\sqrt{a}=a^{\tfrac{1}{2}}}

\sf{\left(5^0+\dfrac{2}{3}\right)^{\tfrac{1}{2}}=0.6^{2-3x}}

\sf{\implies\left(5^0+\dfrac{2}{3}\right)^{\frac{1}{2}}=\left(\dfrac{6}{10}\right)^{2-3x}}

\sf{\implies\left(5^0+\dfrac{2}{3}\right)^{\frac{1}{2}}=\left(\dfrac{3}{5}\right)^{2-3x}}

\sf{\implies \sqrt{5^0+\dfrac{2}{3}}=\left(\dfrac{3}{5}\right)^{2-3x}}

\sf{\implies\:\displaystyle\sqrt{5^0+\frac{2}{3}}=\left(\left(5^0+\frac{2}{3}\right)^{-1}\right)^{2-3x}}

Again Apply exponent rule : \sf{\sqrt{a}=a^{\tfrac{1}{2}}}

\sf{\implies\displaystyle\left(5^0+\frac{2}{3}\right)^{\frac{1}{2}}=\left(\left(5^0+\frac{2}{3}\right)^{-1}\right)^{2-3x}}

Apply exponent rule : \sf{\left(a^{b}\right)^{c}=a^{b c}}

\sf{\implies\displaystyle\left(5^0+\frac{2}{3}\right)^{\frac{1}{2}}=\left(5^0+\frac{2}{3}\right)^{-1\cdot \left(2-3x\right)}}

\Large\boxed{\sf{\mathrm{If\:}a^{f\left(x\right)}=a^{g\left(x\right)}\mathrm{,\:then\:}f\left(x\right)=g\left(x\right)}}

\sf{\implies\dfrac{1}{2}=-1\cdot \left(2-3x\right)}

\sf{\implies\dfrac{1}{2}=-\left(2-3x\right)}

Siwtch Sides :

\sf{\implies-\left(2-3x\right)=\dfrac{1}{2}}

\sf{\implies\dfrac{-\left(2-3x\right)}{-1}=\dfrac{\tfrac{1}{2}}{-1}}

\sf{\implies\displaystyle2-3x=-\frac{1}{2}}

\sf{\implies2-3x-2=-\dfrac{1}{2}-2}

\sf{\implies-3x=-\dfrac{5}{2}}

\sf{\implies\dfrac{-3x}{-3}=\dfrac{-\tfrac{5}{2}}{-3}}

\boxed{\sf{\implies x=\frac{5}{6}}}

Similar questions