Find x if root3 tan 2x=cos60+sin45.cos45
Answers
Answered by
91
sorry the answer s wrong.. from 5th step.. after 4th step
tan2x=1/root3
tan30=1/root3
tan2x=tan30
2x=30
x=15
tan2x=1/root3
tan30=1/root3
tan2x=tan30
2x=30
x=15
Attachments:
![](https://hi-static.z-dn.net/files/d63/23e619e62fd343ce5ecf2c44fc3d75d4.jpg)
Answered by
162
Heya,
![\sqrt{3} \tan(2x) = \cos(60°) + \sin(45°) \cos(45°) \sqrt{3} \tan(2x) = \cos(60°) + \sin(45°) \cos(45°)](https://tex.z-dn.net/?f=+%5Csqrt%7B3%7D+%5Ctan%282x%29+%3D+%5Ccos%2860%C2%B0%29+%2B+%5Csin%2845%C2%B0%29+%5Ccos%2845%C2%B0%29+)
![\sqrt{3} \tan(2x) = 1 \div 2 + 1 \div \sqrt{2} \times 1 \div \sqrt{2} \sqrt{3} \tan(2x) = 1 \div 2 + 1 \div \sqrt{2} \times 1 \div \sqrt{2}](https://tex.z-dn.net/?f=+%5Csqrt%7B3%7D+%5Ctan%282x%29+%3D+1+%5Cdiv+2+%2B+1+%5Cdiv+%5Csqrt%7B2%7D+%5Ctimes+1+%5Cdiv+%5Csqrt%7B2%7D+)
![\sqrt{3} \tan(2x) = 1 \div 2 + 1 \div 2 \sqrt{3} \tan(2x) = 1 \div 2 + 1 \div 2](https://tex.z-dn.net/?f=+%5Csqrt%7B3%7D+%5Ctan%282x%29+%3D+1+%5Cdiv+2+%2B+1+%5Cdiv+2)
![\sqrt{3} \tan(2x) = 1 \sqrt{3} \tan(2x) = 1](https://tex.z-dn.net/?f=+%5Csqrt%7B3%7D+%5Ctan%282x%29+%3D+1)
![\tan(2x) = 1 \div \sqrt{3} \tan(2x) = 1 \div \sqrt{3}](https://tex.z-dn.net/?f=+%5Ctan%282x%29+%3D+1+%5Cdiv+%5Csqrt%7B3%7D+)
![\tan(2x) = 1 \div \sqrt{3} = \tan(30°) \tan(2x) = 1 \div \sqrt{3} = \tan(30°)](https://tex.z-dn.net/?f=+%5Ctan%282x%29+%3D+1+%5Cdiv+%5Csqrt%7B3%7D+%3D+%5Ctan%2830%C2%B0%29+)
![2x = 30° 2x = 30°](https://tex.z-dn.net/?f=2x+%3D+30%C2%B0)
![x = 15° x = 15°](https://tex.z-dn.net/?f=x+%3D+15%C2%B0)
Value of x is 15°
Hope this helps you.....:)
Value of x is 15°
Hope this helps you.....:)
Similar questions
Computer Science,
9 months ago
Social Sciences,
1 year ago
Physics,
1 year ago
Social Sciences,
1 year ago