Math, asked by jainsanjana5020, 11 months ago

Find x . If u are a mathematician. Pls do . I need it

Attachments:

Answers

Answered by Anonymous
3

Answer:

Here OB and CD are 2 intersecting chords

As 2 intersecting chords always make same corresponding angle to chord or lines joining a point other than respective intersecting chord

So, <COB = <CDB =x

As <COA =130

SO, <COB = 180-130( linear pair)

= 50

Hence , <CDB =X = 50

#answerwithquality #BAL

Answered by Anonymous
1

❏ Solution:-

Fig:-

is in the attachment (of the questionar)

Given:-

\sf\longrightarrow \angle AOC=130\degree

\sf\longrightarrow OC||BD

•To Find:- \sf\longrightarrow \angle BDC=X=?

construction:-

O,D and B,C are connected.

•Finding:-

Now, \sf\longrightarrow \angle AOC=130\degree

\sf\longrightarrow \angle COB=\angle AOB-\angle AOC

\sf\longrightarrow \angle COB=180\degree-130\degree

\sf\longrightarrow\boxed{\red{ \angle COB=50\degree}}

Now, we know that radius of a circle bisects the chord.

Here, radius OB , bisected the chord CD.

\therefore \angle COD is bisected by OB.

\therefore \angle DOB=\angle COB=50\degree

Hence,

\sf\longrightarrow \angle  COD=\angle DOB+\angle COB

\sf\longrightarrow \angle  COD=50\degree+50\degree

\sf\longrightarrow\boxed{ \angle  COD=100\degree}

Now, OC=OD (as, radii of same circle)

\therefore \angle OCD=\angle ODC

Now, from the ∆COD,

\sf\longrightarrow \angle COD+\angle OCD+\angle ODC=180\degree

\sf\longrightarrow 100\degree+\angle OCD+\angle OCD=180\degree

\sf\longrightarrow 2\angle OCD=180\degree-100\degree

\sf\longrightarrow \angle OCD=\frac{\cancel{80}\degree}{\cancel2}

\sf\longrightarrow \bf\angle OCD=  40\degree

Now, OC||BD,

So, \sf\longrightarrow \bf\angle OCD= \angle BDC=40\degree

[as, alternate angle]

\sf\longrightarrow \bf\boxed{ \red{\angle BDC=X=40\degree}}

━━━━━━━━━━━━━━━━━━━━━━━

\underline{ \huge\mathfrak{hope \: this \: helps \: you}}

#answerwithquality & #BAL

Similar questions