Math, asked by Ramleela84, 1 year ago

Find x in given equation:

1/(x + 1) + 2/(x + 2) = 5/(x + 4)

Answers

Answered by Anonymous
11

Solution:

Given:

\sf{\implies \dfrac{1}{x+1}+\dfrac{2}{x+2}=\dfrac{5}{x+4}}

To find:

=> Value of x.

So,

\sf{\implies \dfrac{1}{x+1}+\dfrac{2}{x+2}=\dfrac{5}{x+4}}

First we will take LCM,

\sf{\implies \dfrac{x+2+2x+2}{x^{2}+3x+2}=\dfrac{5}{x+4}}

Then cross multiply,

\sf{\implies (x+4)(x+2+2x+2)=5(x^{2}+3x+2)}

\sf{\implies x^{2}+2x+2x^{2}+2x+4x+8+8x+8=5x^{2}+15x+10}

\sf{\implies 3x^{2}+16x+16=5x^{2}+15x+10}

\sf{\implies 3x^{2}+16x+16-5x^{2}-15x-10=0}

\sf{\implies -2x^{2}+x+6=0}

By splitting middle term method,

\sf{\implies -2x^{2}+x+6=0}

\sf{\implies -2x^{2}+4x-3x+6}

\sf{\implies -2x(x+2)-3(x+2)}

\sf{\implies (-2x-3) (x+2)}

So,

\sf{\implies -2x-3=0}

\sf{\implies -2x = 3}

{\boxed{\boxed{\bf{\implies x = -\dfrac{3}{2}}}}}

\sf{\implies x+2=0}

{\boxed{\boxed{\bf{\implies x = -2}}}}}


Anonymous: Great answer
Similar questions