Math, asked by gis0786, 8 months ago

Find x in the following figure ​

Attachments:

Answers

Answered by Anonymous
11

ANSWER

\red{\text{NOTE:-FOR DIAGRAM REFER THE ATTACHMENT.}}

\large\underline\bold{GIVEN,}

\dashrightarrow \: \angle  ABC= 40\degree

\dashrightarrow \angle DAC= 45\degree

\dashrightarrow \angle ADC= 90\degree

\dashrightarrow \angle ACD=  y\degree

\dashrightarrow \angle ABD=x\degree

\dashrightarrow \angle ADC= 90\degree \:--\boxed{ \angle ADC = \angle ADB \:[ as\:AD \:is\:perpendicular\:to\:BC}

\large\underline\bold{TO\:FIND,}

\dashrightarrow Value\:of\:x

✯.IDENTITY IN USE,

\large{\boxed{\bf{ \star\:\: \:angle\:sum\:property\:of\:triangle=180\degree\:\: \star}}}

\large\underline\bold{SOLUTION,}

\therefore \:finding\:the\:value\:of\:x,

\sf\large\therefore in\: \triangle ABD,

\dashrightarrow \angle ABD+ \angle BDA + \angle DAB =180\degree

\implies 40 +  90+ x= 180\degree

\implies 130\degree+x=180\degree

\implies x=180-130

\implies x=50\degree

\large{\boxed{\bf{ \star\:\: \angle BAD(x)= 50\degree \:\: \star}}}

\therefore \:finding\:the\:value\:of\:y,

\sf\large\therefore in\: \triangle ADC,

\dashrightarrow \angle DAC= 45\degree

\dashrightarrow \angle ADC= 90\degree

\therefore by\:angle\:sum\:property,

\dashrightarrow \angle ADC+ \angle DAC + \angle ACD =180\degree

\implies 90+45+y=180\degree

\implies 135+y= 180

\implies y= 180-135

\implies y=45\degree

\large{\boxed{\bf{ \star\:\: \angle ACD (y)=45\degree\:\: \star}}}

\large\underline\bold{VALUE\:OF\:x\:IS\:50\degree\:AND\:VALUE\:OF\:y\:IS\:45\degree}

_______________

Attachments:
Similar questions