Math, asked by GhostCalyrex2, 1 month ago

Find x in the following figure...

Attachments:

Answers

Answered by yadavvansh1412
2

Answer:

X = 20

Step-by-step explanation:

As shown in the figure ----->

             In Δ ABO

               AB = AO

              So, Δ ABO is an isosceles Δ

              ∠ AOB = ∠ ABO    (  THEOREM : opposite angle of equal sides)

              ∠ AOB = 3x + 10 °  --- 1     (Given : ∠ ABO = 3x + 10 ° )

           

    ∠ AOB = ∠ COD  ( Vertically Opposite Angle )                          

    ∠ COD = 3x +10 °  ---- 2 (Proved  ( IN 1) :  ( ∠ AOB = 3x + 10° )

In Δ CDO

     DC = OC ( Shown in figure)

   ∠ COD = ∠ CDO   ( THEOREM : Opposite angle of equal sides )

    ∠ CDO = 3x + 10° ( Proved (In 2) : ∠ COD = 3x + 10° )

  ∠ DCO = 2x ° ( Given )

∠ DCO + ∠ CDO  +  ∠ COD = 180° ( Sum of all angles of triangle = 180°)

 2x°  + 3x + 10° + 3x + 10° = 180°

8x + 20° = 180°

8x ° = 180 ° - 20°

8x° = 160°

x° = 160° / 8

X = 20

Please Mark As  BRAINLIEST!!!!

Answered by GhostCalyrex
0

Answer:

20

Step-by-step explanation:

lsksdhuejeseirurhrb

Similar questions