find x, limx-0^+ (sinx)^tanx
Answers
Answered by
2
lim(x→0⁺) sinx^tanx
⇒lim(x→0⁺)e^tanx.㏑sinx
⇒e^lim(x→0⁺){ lin sinx/cotx }
⇒e^lim(x→0⁺){cosx/sinx.(-cosec²x)}
⇒e^lim(x→0⁺){-sinx.cosx}
now put x→0⁺
= e⁰ = 1
⇒lim(x→0⁺)e^tanx.㏑sinx
⇒e^lim(x→0⁺){ lin sinx/cotx }
⇒e^lim(x→0⁺){cosx/sinx.(-cosec²x)}
⇒e^lim(x→0⁺){-sinx.cosx}
now put x→0⁺
= e⁰ = 1
Similar questions