Math, asked by chaviag, 3 months ago

Find x
 {4}^{x}  -  {4}^{x - 1 }  = 24
4^(x)−4^(x−1)=24

Answers

Answered by sainiinswag
21

{\large{\boxed{\colorbox{lime}{\pink{\text{Answer }}}}}}

.

The value of X = 5/2 = 2.5

Step-by-step explanation:

{4}^{x} - {4}^{x - 1 } = 24 \\  \\  {4}^{x}  -  {4}^{x}  \times  {4}^{ - 1}  = 24 \\  \\  {4}^{x} (1 -  {4}^{ - 1} ) = 24 \\  \\  {4}^{x} (1 -  \frac{1}{4} ) = 24 \\  \\  {4}^{x} ( \frac{4 - 1}{4} ) = 24 \\  \\  {4}^{x}   \times  \frac{3}{4}  = 24 \\  \\  {4}^{x}  = 24 \times  \frac{4}{3}  \\  \\  { ({2}^{2} )}^{x}  =  \frac{96}{3}  \\  \\  {2}^{2x}  = 32 \\  \\  {2}^{2x}  =  {2}^{5}  \\  \\ 2x = 5 \\  \\ x =  \frac{5}{2}  = 2.5 \\  \\ used \: identity \\  \\ if \:  \:  \:  {a}^{m}  =  {a}^{n}  \:  \:  \:  \: then \:  \:  \: m = n

.

.

\huge\boxed{\fcolorbox{black}{pink}{Hope.It's.Help.You!}}


chaviag: Thanks a lot
sainiinswag: Welcome ji
raj2735: thanks
Answered by mathdude500
9

❥︎ Question :-

\bf \:Find  \: x :  {4}^{x}  -  {4}^{(x - 1)} =24

\bf\large \underbrace\red{Answer:}

❥︎ Identity used :- (Laws of exponents)

\bf \: {x}^{m}  \times  {x}^{n}  =  {x}^{m + n}

\bf \: {x}^{m}   \div   {x}^{n}  =  {x}^{m  -  n}

\bf \:if \:  {x}^{m}  =  {x}^{n} \implies \:m = n

\bf \: {x}^{ - y}  = \dfrac{1}{ {x}^{y} }

❥︎ Solution :-

\bf \: {4}^{x}  -  {4}^{(x - 1)} =24

\bf\implies \: {4}^{x}  -  {4}^{x}  \times  {4}^{ - 1}  = 24

\bf\implies \: {4}^{x} (1 -  {4}^{ - 1} ) = 24

\bf\implies \: {4}^{x} (1 - \dfrac{1}{4} ) = 24

\bf\implies \: {4}^{x}  \times \dfrac{3}{4}  = 24

\bf\implies \: {4}^{x}  = 24 \times \dfrac{4}{3}

\bf\implies \: {4}^{x}  = 32

\bf\implies \: {2}^{2x}  =  {2}^{5}

\bf\implies \:2x = 5

\bf\implies \:x = \dfrac{5}{2}

__________________________________________


andrea76: mathdude help me check my question
andrea76: first question
mathdude500: yeah sure
suman8615: punu reply Karo plz
Similar questions