Math, asked by Mister360, 3 months ago

Find x
 \bf \:  \sqrt{12 +x}  =  \sqrt{20 - x}

Answers

Answered by chinmayi398
0

Step-by-step explanation:

squaring both terms we get

12+x=20-x

so 2x=20-12

2x=8

x=4

Answered by saanvigrover2007
8

\large  \pmb{\sf{Question :}}

 \sf Find \:  x : \sqrt{12 +x} = \sqrt{20 - x}

━━━━━━━━━━━━━━━━━━━━━━━━━━

\large  \pmb{\sf{Final \: Answer : }}

 \pink \bigstar  \: \color{maroon} \boxed{\sf \color{green}  :  \leadsto \: x = 4}

━━━━━━━━━━━━━━━━━━━━━━━━━━

\large \pmb{\sf{Method \: 1 : }}

 \sf:  \leadsto  \sqrt{12 + x} =  \sqrt{20 - x}

 \footnotesize \color{green} \boxed{   \sf{ \color{maroon}{Consider  \: a  \: number \sqrt{y}, it  \: can \:  also  \: be \:  written  \: as \: ( y)^{\frac{1}{2}}}}}

 \sf:  \leadsto (12 + x)^{ \frac{1}{2} }  =  (20 - x)^{ \frac{1}{2} }

 \sf:  \leadsto (12 + x)^{ \cancel\frac{1}{2} }  =  (20 - x)^{  \cancel\frac{1}{2} }

 \sf:  \leadsto 12 + x = 20 - x \\  \sf: \leadsto x + x = 20 - 12

\sf :  \leadsto 2x = 8 \\ \sf: \leadsto x =  \frac{8}{2}

 \red \bigstar \boxed{\sf \color{purple}  :  \leadsto \: x = 4}

━━━━━━━━━━━━━━━━━━━━━━━━━━

\large \pmb{\sf{Method \: 2 : }}

 \sf:  \leadsto  \sqrt{12 + x} =  \sqrt{20 - x}

 \footnotesize \color{green} \boxed{  \textsf{ \color{maroon}{Squaring both the sides}}}

 \sf:  \leadsto 12 + x = 20 - x \\  \sf: \leadsto x + x = 20 - 12

\sf :  \leadsto 2x = 8 \\ \sf: \leadsto x =  \frac{8}{2}

 \red \bigstar \boxed{\sf \color{purple}  :  \leadsto \: x = 4}

━━━━━━━━━━━━━━━━━━━━━━━━━━

\sf \color{azure}\fcolorbox{pink}{purple}{ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \#Bebrainly \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \:\:\:\: \: \: \: \:}

━━━━━━━━━━━━━━━━━━━━━━━━━━

\sf \color{azure}\fcolorbox{pink}{black}{ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: @Saanvigrover2007 \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \:}

Similar questions