Math, asked by ramandeepkaur9507, 10 months ago

Find (x+y)^2/xy +(y+z)^2/yz(zx)^2/zx if x3+y3+z3=3xyz and x+y+z=0

Answers

Answered by Cosmique
22

Answer

  \underbrace{\overbrace{ \orange{ \sf{ \dfrac{ {(x  + y)}^{2} }{xy} +  \dfrac{ {(y + z)}^{2} }{yz}  +  \dfrac{ {(z + x)}^{2} }{xz}  = 3 }}}}

Given

  \red{ \bigstar} \: \sf{x + y + z = 0}

 \red{ \bigstar} \:  \sf{ {x}^{3} +  {y}^{3}  + {z}^{3}  = 3 \: xyz  }

To find

 \red{ \bigstar} \:  \sf{ \dfrac{ {(x + y)}^{2} }{xy} +  \dfrac{ {(y + z)}^{2} }{yz} +  \dfrac{ {(z + x)}^{2} }{xz}   }

Solution

As given

 \red{\implies }\sf{ {x}^{3} +  {y}^{3}   +  {z}^{3}  = 3 \: xyz }

dividing by xyz both sides

 \red{\implies} \sf{  \dfrac{ {x}^{3} }{xyz}  +  \dfrac{ {y}^{3} }{xyz} +  \dfrac{ {z}^{3} }{xyz} =  \dfrac{3 \: xyz}{xyz}   }

 \red{\implies} \sf{  \dfrac{ {x}^{2} }{yz} +  \dfrac{ {y}^{2} }{xz}   +  \dfrac{ {z}^{2} }{xy}  = 3}

since,

x + y + z = 0

therefore,

x = - (y + z)

y = - (z + x)

z = - (x + y)

so,

\red{ \implies} \sf{ \dfrac{ {( -( y + z))}^{2} }{yz} +  \dfrac{ {( - (x + z))}^{2} }{xz}  +  \dfrac{ {( - (x + y))}^{2} }{xy}  = 3 }

\red{ \implies} \sf{ \dfrac{ {(y + z)}^{2} }{yz}  +  \dfrac{ {(x + z)}^{2} }{xz}  +  \dfrac{ {(x + y)}^{2} }{xy}  = 3}

 \boxed{ \boxed{ \red{  \implies  \: \sf{ \dfrac{ {(x + y)}^{2} }{xy}  +  \dfrac{ {(y + z)}^{2} }{yz} +  \dfrac{ {(z + x)}^{2} }{xz}  = 3 }}}}  \huge{\dagger}

Answer.

Similar questions