Math, asked by gulabsingh14090, 5 months ago

Find x,y in the given figures of the dimensions are given in cm: ​

Attachments:

Answers

Answered by Anonymous
4

★GIVEN★

  • Diagonal = (x + 2) cm.
  • Length = x cm.
  • Breadth = 12 cm.

★To Find★

The value of x.

★SOLUTION★

We know that diagonal of a rectangle,

\large{\green{\underline{\boxed{\bf{Diagonal=\sqrt{{(Length)}^{2}+{(breadth)}^{2}}}}}}}

According to the question,

\large\implies{\sf{Diagonal=\sqrt{{(Length)}^{2}+{(breadth)}^{2}}}}

\large\implies{\sf{x+2=\sqrt{{(x)}^{2}+{(12)}^{2}}}}

Squaring both the sides,

\large\implies{\sf{{(x+2)}^{2}={(x)}^{2}+{(12)}^{2}}}

\large\implies{\sf{{x}^{2}+4x+4={x}^{2}+144}}

\large\implies{\sf{\cancel{{x}^{2}}\:+4x+4=\:\cancel{{x}^{2}}+144}}

\large\implies{\sf{4x+4=144}}

\large\implies{\sf{4x=144-4}}

\large\implies{\sf{4x=140}}

\large\implies{\sf{x=\dfrac{140}{4}}}

\large\implies{\sf{x=\dfrac{\cancel{140}}{\cancel{4}}}}

\large\therefore\boxed{\bf{x=35\:cm.}}

So,

  • Breadth = 12 cm.
  • Length = x = 35 cm.
  • Diagonal = x + 2 = 35 + 2 = 37 cm.

The value of x is 35 cm.

Similar questions