find x,y,z?????????????
Attachments:
Answers
Answered by
1
since AB=AD=> x= 70 degrees
(angles opposite to equal sides )
in triangle ACD, z=180-(100+70)=> 180-170
=> z=10 degrees
now angle ACB=> 180-100 (linear pair )
=> 80 degrees
therefore y =>180-(80+70)
=>180-150=>30 degrees
(angles opposite to equal sides )
in triangle ACD, z=180-(100+70)=> 180-170
=> z=10 degrees
now angle ACB=> 180-100 (linear pair )
=> 80 degrees
therefore y =>180-(80+70)
=>180-150=>30 degrees
huner13:
thx
Answered by
1
In ΔABD,
It's given that AB=AD
⇒It is isosceles
∴∠B = x =70° ( isosceles triangle property)
∠B + z + y +x = 180° (Angle sum proptery)
70°+70°+ y + z = 180°
y + z = 180° - 140°
∴y + z = 40° →1
In ΔACD,
x + z + 100° = 180° (Angle sum property)
70°+100°+ z = 180°
z = 180°-170°
∴ z=10°
Substituting z in 1, we get:
y+z=40°
y+10°=40°
y=40°-10°
∴y=30°
It's given that AB=AD
⇒It is isosceles
∴∠B = x =70° ( isosceles triangle property)
∠B + z + y +x = 180° (Angle sum proptery)
70°+70°+ y + z = 180°
y + z = 180° - 140°
∴y + z = 40° →1
In ΔACD,
x + z + 100° = 180° (Angle sum property)
70°+100°+ z = 180°
z = 180°-170°
∴ z=10°
Substituting z in 1, we get:
y+z=40°
y+10°=40°
y=40°-10°
∴y=30°
Similar questions