Math, asked by SubinThomas, 2 days ago

Find x, y, z in the following figure.​

Attachments:

Answers

Answered by aartigarggvg
0

Answer:

in this figure we are given that BE=BD

angle E=angleD( angles opp to equal sides in a triangle)

50 +A+A=180(angle sum property)

A=75=angleE=angleZ

angle y=angleE and angle x=anglez

because ACparallel toEd

and BD and BE are transversals

so angles are equal because they are pair of alternate ang

angx=angy=angz=75 degree

pls mark brainliest

Answered by MysticalAnswerer
1

\huge{\underline{\underline{\mathfrak{Answer : }}}}

\angle{x} = \angle{y} = \angle{z} = 65°

_____________________

\huge{\underline{\underline{\mathfrak{Explanation : }}}}

As, From the figure we can see that \angle{x} = \angle{y} ( Vertical Opposite angles). Let the \angle{x} and \angle{y} be a.

So, A.T.Q

\sf{\implies a + 50° + a = 180° } \\ \sf{\implies 2a = 180 - 50} \\ \sf{\implies 2a = 130} \\ \sf{\implies a = \dfrac{\cancel{130}}{\cancel{2}}} \\ \sf{\implies a = 65°}

_____________________

Now, \angle{BED}= \angle{BDE} ( Angles opposite to equal side in a triangle BE || BD.

So, Let \angle{BED}= \angle{BDE} be b.

\sf{\implies b + 50° + b = 180° ( Angle \ sum \ property)} \\ \sf{\implies 2b = 180 - 50} \\ \sf{\implies 2b = 130} \\ \sf{\implies b = \dfrac{\cancel{130}}{\cancel{2}}} \\ \sf{\implies b = 65°}

\LARGE{\underline{\underline{\boxed{\sf{ x = y = z = 65°}}}}}

Similar questions