Math, asked by riteshkumar6416, 10 months ago

Find x3+1/x3 if x+1/x = -6​

Answers

Answered by sowvikpanigrahi2003
0

Answer:

the answer of this question is present in the following picture

Attachments:
Answered by Ignaive
1

AnswEr :

⋆ ɢɪᴠᴇɴ : \sf\ x + \frac{1}{x} = -6

 \rule{170}2

\scriptsize\qquad\dag\sf\ cubing \: both \: sides

\sf\ : \implies\big( x + \frac{1}{x} \big)^3 = (-6)^3\\\\\scriptsize\qquad\dag\sf\ using (a+b)^3 = a^3 + b^3 + 3(a + b)\\\\\sf\ : \implies\big( x^3 + \frac{1}{x^3} + 3( x + \frac{1}{x}) \big)= -216\\\\\\\\\sf\ : \implies\big( x^3 + \frac{1}{x^3} + 3(-6) \big)  = -216\\\\\\\sf\ : \implies\big( x^3 + \frac{1}{x^3} \big) = -216 + 18\\\\\\\sf\ : \implies\big( x^3 + \frac{1}{x^3} \big) = -198\\\\\\\ : \implies\boxed{\bf\big( x^3 + \frac{1}{x^3} \big) = -198}

Similar questions