Science, asked by vllblavanyasaini0409, 6 months ago

find y' if y = x+1/✓x, x=1/4​

Answers

Answered by Asterinn
7

Given :

  • y = x+1/✓x
  • x = 1/4

To find :

  • y' or dy/dx

Solution :

 \implies \: y  = x +  \dfrac{1}{ \sqrt{x} }

Differentiating both sides.

\implies \:    \dfrac{dy}{ dx }  =\dfrac{d(x +  \dfrac{1}{ \sqrt{x} } )}{ dx }

\implies \:    \dfrac{dy}{ dx }  =\dfrac{d(x )}{ dx }  + \dfrac{d(  \dfrac{1}{ \sqrt{x} } )}{ dx }

\implies \:    \dfrac{dy}{ dx }  =1  + \dfrac{d(   {x}^{ -  \frac{1}{2} }  )}{ dx }

\implies \:    \dfrac{dy}{ dx }  =1   -  \dfrac{1}{2}  (   {x}^{ -  \frac{1}{2} - 1 })

\implies \:    \dfrac{dy}{ dx }  =1   -  \dfrac{1}{2}    {x}^{ \frac{ - 3}{2} }

Now put x = 1/4

\implies \:    \dfrac{dy}{ dx }  =1   -  \dfrac{1}{2}    {( \dfrac{1}{4} )}^{ \frac{ - 3}{2} }

\implies \:    \dfrac{dy}{ dx }  =1   -  \dfrac{1}{2}    {( \dfrac{1}{ {2}^{2} } )}^{ \frac{ - 3}{2} }

\implies \:    \dfrac{dy}{ dx }  =1   -  \dfrac{1}{2}    {( \dfrac{1}{ {2} } )}^{ \frac{ - 3}{2}  \times 2}

\implies \:    \dfrac{dy}{ dx }  =1   -  \dfrac{1}{2}    {( \dfrac{1}{ {2} } )}^{ - 3}

\implies \:    \dfrac{dy}{ dx }  =1   -  \dfrac{1}{2}    {( { {2} } )}^{  3}

\implies \:    \dfrac{dy}{ dx }  =1   -    {( { {2} } )}^{  2}

\implies \:    \dfrac{dy}{ dx }  =1   -  4

\implies \:    \dfrac{dy}{ dx }  =   -  3

Answer :

y' or dy/dx = -3

___________________

Learn more :

d(x^n)/dx = n x^(n-1)

d(log x)/dx = 1/x

d(e^x)/dx = e^x

d(sinx)/dx = cosx

d(cos x)/dx = -sin x

d(cosec x)/dx = -cot x cosec x

d(tan x)/dx = sec²x

d(sec x)/dx = secx tanx

d(cot x)/dx = - cosec² x

Similar questions