Math, asked by GopichandNishad11, 1 year ago

Find z1/z2 ,when z1 = ( 6 + 3i) and z2 = ( 3-i )

Answers

Answered by Hacker20
6
I hope Help this attachment
Attachments:
Answered by pinquancaro
2

The value is \frac{z_1}{z_2}=\frac{3+3i}{2}

Step-by-step explanation:

Given : z_1=6+3i and z_2=3-i

To find : The value of \frac{z_1}{z_2} ?

Solution :

Expression \frac{z_1}{z_2}

Substitute, z_1=6+3i and z_2=3-i

\frac{z_1}{z_2}=\frac{6+3i}{3-i}

Rationalize,

\frac{z_1}{z_2}=\frac{6+3i}{3-i}\times \frac{3+i}{3+i}

\frac{z_1}{z_2}=\frac{18+6i+9i+3i^2}{3^2-i^2}

\frac{z_1}{z_2}=\frac{18+15i-3}{9+1}

\frac{z_1}{z_2}=\frac{15+15i}{10}

\frac{z_1}{z_2}=\frac{3+3i}{2}

Therefore, the value is \frac{z_1}{z_2}=\frac{3+3i}{2}

#Learn more

If arg(z1/z2)=pi/2 then find the value of z1+z2/z1-z2

https://brainly.in/question/7326612

Similar questions