Math, asked by vikrantpalle3753, 9 months ago

Find zero of the polynomials by splitting the middle terms
1. 12x^2-7x+1
2. 2x^2+7x+3
3. 6x^2+5x-6
4. 3x^2-x-4

Answers

Answered by ShírIey
62

AnswEr:

\bullet\:\large\sf\pink{12x^2 - 7x + 1}

\:\:\;\:\:\:\dag\:\footnotesize{\underline{\underline{\sf{\red{Using\: Splitting\: The\: Middle\:Term\;Method}}}}}

\implies\sf\; 12x^2 - 4x - 3x + 1 \\ \\ \implies\sf 4x(3x -1) -1 (3x -1)\\ \\ \implies\sf (3x -1) (4x -1) \\ \\ \implies\sf x = \dfrac{1}{3}  \:\& x = \dfrac{1}{4}

\rule{120}2

\bullet\:\large\sf\pink{2x^2 + 7x + 3}

\implies\sf 2x^2 + 6x + x + 3 \\ \\ \implies\sf 2x(x +3) +1(x +3) \\ \\ \implies\sf (x + 3) (2x +1)\\ \\ \implies\sf x = -3 \:\& \: x = \dfrac{-1}{2}

\rule{120}2

\bullet\:\large\sf\pink{6x^2 + 5x -6}

\implies\sf 6x^2 + 9x - 4x - 6\\ \\ \implies\sf 3x(2x + 3) -2(2x +3) \\ \\ \implies\sf (2x +3) (3x -2)\\ \\ \implies\sf x = \dfrac{-3}{2} \:\&\: x = \dfrac{2}{3}

\rule{120}2

\bullet\;\large\sf\pink{3x^2 - x - 4}

\implies\sf 3x^2 - 4x + 3x -4 \\ \\ \implies\sf x(3x -4) +1(3x -4) \\ \\ \implies\sf (3x - 4) (x +1)\\ \\ \implies\sf x = \dfrac{4}{3} \:\&\: x = -1

Answered by Anonymous
3

hope it helps mate

_______________b@dbo¥_____________

Attachments:
Similar questions