Math, asked by arorajiya874, 10 months ago

find zeroes for the quadratic polynomial 2√3x²-5x+3

Answers

Answered by BrainlyConqueror0901
5

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{x=  \frac{5 \pm4.07 \iota}{4 \sqrt{3}}}}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given:}} \\  \tt:  \implies 2 \sqrt{3}{x}^{2} - 5x + 3 = 0 \\  \\  \red{\underline \bold{To \: Find:}}  \\  \tt:  \implies Value \: of \: x = ?

• According to given question :

 \tt: \implies 2 \sqrt{3} x^{2}   - 5x + 3 = 0  \\    \\  \tt\circ \: a = 2 \sqrt{3}  \\  \\ \tt\circ \:  b =  - 5 \\  \\  \tt \circ \:c = 3 \\ \\  \bold{As \: we \: know \: that} \\  \tt:  \implies D=  {b}^{2}   - 4ac\\  \\  \tt: \implies D =  {( - 5)}^{2}  - 4 \times 2 \sqrt{3}  \times 3 \\  \\ \tt: \implies D = 25 - 24 \sqrt{3}  \\  \\  \tt: \implies D= 25 - 41.6 \\  \\ \tt: \implies D =  - 16.6 \\  \\  \tt:  \implies x =  \frac{ - b \pm  \sqrt{D} }{2a}  \\  \\  \tt:  \implies x =  \frac{ - ( - 5) \pm \sqrt{ - 16.6} }{2 \times 2 \sqrt{3} }  \\  \\ \tt: \implies x =  \frac{5 \pm \sqrt{16.6} \iota }{4 \sqrt{3} }  \\  \\  \green{\tt: \implies x=  \frac{5 \pm4.07 \iota}{4 \sqrt{3} } }

Answered by CRACYFORSTUDIES
0

Ans:

Solve by splitting middle term

=> 2√3x² - 5x - √3 = 0

=> 2√3x² - 6x + x - √3 = 0

=> 2√3x (x - √3) + 1 (x - √3) = 0

=> (x - √3) (2√3x + 1) = 0

Either

=> x - √3 = 0

=> x = √3

or

=> 2√3x + 1 = 0

=> 2√3x = -1

=> x = -1/2√3

√3 and -1/2√3 are the zeros

Similar questions