Math, asked by kavyakavzz, 1 year ago

find zeroes of quadratic polynomial 6x²-3-7x and verify the relation between zeroes anf its coefficient

Answers

Answered by RehanAhmadXLX
4
Heya !!
Here is your answer.
Given : 6x² - 3 - 7x

Reordering according to degree of polynomial••

6x² - 7x - 3
Using Hit and Trial Method ::::::
We have to find two numbers a and b such that a+b = -7 and a×b = -18.
Looking at the prime factorisation of 18 = 2×3×3
We get a and b as 2 and 9.

So,
6x² - 7x - 3 = 0
=> 6x² - 9x + 2x - 3 = 0
=> 3x (2x - 3) + 1 (2x - 3) = 0
=> (3x + 1)(2x - 3) = 0

3x + 1 = 0 and 2x - 3 = 0
x = -1/3 and x = 3/2.

Verification :

Comparing the equation with ax² + bx + c = 0,
we get
a = 6, b = -7 and c = -3.

Now,
Sum of zeroes = \frac{-b}{a}
Sum of zeroes :
 =  >  \frac{ - 1}{3}  +  \frac{3}{2}   \\  =  >  \frac{ - 2 + 9}{6}  =  \frac{7}{6}
And,
 \frac{ - b}{a}  =   - (\frac{ - 7}{6} ) =  \frac{7}{6}
LHS = RHS
Now,
Product of Zeroes = \frac{c}{a}
Product of zeroes :
 =  >  \frac{ - 1}{3}  \times  \frac{3}{2}    =  \frac{ - 1}{2}
And,
 \frac{c}{a}  =  \frac{3}{6}  =  \frac{1}{2}
LHS = RHS

Hence, proved.

Hope You Got It
Answered by Anonymous
39

\Large{\underline{\underline{\bf{Answer:-}}}}

6 {x}^{2}  - 3 - 7x \\  \\ =  6 {x}^{2}  + 2x - 9x - 3 \\  \\ =  2x(3x + 1) - (3 x + 1) \\  \\  = (2x - 3)(3x + 1) \\  \\ 2x - 3 = 0 \\  \\ 2x = 3 \\  \\ x =  \frac{3}{2}  \\  \\ 3x + 1  = 0\\  \\ 3x = -  1 \\  \\ x =  \frac{ - 1}{3}   \\ \\let \: the \: zeroes \:of  \: the \: polynomial \: be \:  \alpha  \: and \:  \beta  \\  \\ sum \: of \: zeroes \: ( \alpha  \: and \:  \beta ) =  \frac{ - coefficient \: of \: x}{coefficient \: of \:  {x}^{2} }   \\  \\  \frac{3}{2}  + ( -  \frac{1}{3} ) =  \frac{ - 7}{6}  \\  \\  \frac{9 - 2}{6}  =  - ( -  \frac{7}{6} ) \\  \\  \frac{7}{6}  =  \frac{7}{6}  \\  \\ <strong>Produ</strong><strong>ct</strong>\: <strong>of</strong> \: <strong>zeroes</strong> \:  (\alpha  \beta ) =  \frac{constant \: term \: }{coefficient \: of \:  {x}^{2} }  \\  \\  \frac{ - 1}{3}  \times  \frac{3}{2}  =  \frac{ - 3}{6}  \\  \\  \frac{ - 3}{6}  =  \frac{ - 3}{6}

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

\Large{\underline{\underline{\bf{Hence\: Verified\: !}}}}

\Large{\underline{\underline{\bf{Thanks}}}}

Similar questions