Math, asked by HarshadTheurkar, 11 months ago

Find zeros of following polynomial and verify it's relationship between zeros and coefficient.
 ({7y}^{2})  - (\frac{11y}{3})- (\frac{2}{3}) = 0

Answers

Answered by Sharad001
21

Answer :-

 \to \sf \:  Zeros \: are \: \:   \frac{ - 1}{7}  \: \:  and \: \:   \frac{2}{3}

Explanation :-

We have

 \implies \sf{({7y}^{2}) - (\frac{11y}{3})- (\frac{2}{3}) = 0} \:  \\  \\  \implies \sf{\frac{21 {y}^{2}  - 11y - 2}{3}  = 0} \\  \\  \implies \sf{21 {y}^{2}  - 11y - 2 = 0} \:  ....eq.(1) \\  \\ \bf{  \green{ split \: the} \red{ \: middle \: term \: }} \\  \\  \implies \sf{21 {y}^{2}  - (14 - 3)y - 2 = 0} \\  \\  \implies \sf{21 {y}^{2}  - 14y + 3y - 2 = 0} \\  \\  \implies \sf{ 7y(3y - 2) + 1(3y - 2) = 0}

 \implies \sf{ (3y - 2)(7y + 1) = 0} \\  \\  \: (1) \bf \: if \:  \\  \to \sf{ 3y - 2 = 0 }\\  \\  \to \sf{3y = 2} \\  \\  \to  \boxed{\sf{y =  \frac{2}{3} }} \\  \\ (2) \bf \: if \:  \\  \to \sf{ 7y + 1 = 0} \\  \\  \to \boxed{ \sf{y =  \frac{ - 1}{7} }}

Verification :-

(1) \sf{  \: if  \: \: y =  \frac{2}{3} } \:  \:  \: put \: in \: eq.(1) \\  \\  \to \: 21 { \bigg( \frac{2}{3} \bigg) }^{2}  - 11 \times  \frac{2}{3}  - 2 = 0 \\  \\  \to \:  \frac{84}{9}  -  \frac{22}{3}  - 2 = 0 \\  \\  \to \:  \frac{84 - 66 - 18}{9}  = 0 \\  \\  \to \:  \frac{0}{9}  = 0 \\  \\  \to \:  \boxed{0 = 0}

(2) \bf \: if \:  \: y =  \frac{ - 1}{7}  \\  \\  \to \: 21 \times  \frac{1}{49}  -  \frac{11 \times( - 1) }{7}  - 2 = 0 \\  \\  \to \:  \frac{21}{49}  +  \frac{11}{7}  - 2 = 0 \\  \\  \to \:  \frac{21 + 77 - 98}{49}  = 0 \\  \\  \to  \boxed{ 0 = 0}

Hence verified.

 \star \sf{  \:  \: Coefficient \: of \:  {y}^{2}  =7} \:  \\  \\  \star \:  \sf{ Coefficient   \:  of \: y =  -  \frac{11}{3} }

Similar questions